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ON THE DISCRETE SPECTRUM OF NEW EXACTLY
SOLVABLE QUANTUM N-BODY PROBLEM ON A LINE

V.I.Inozemtsev, D.V.Meshcheryakov

It is shown that the discrete spectrum of a quan-—
tum N-body problem with the Hamiltonian
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(the Sutherland system in the Morse potential) is de-
termined by an algebraic equation. The eigenvalues
and eigenfunctions, corresponding to simple exci-
tations of the systems, are found explicitly.

The investigation has been performed at the
Laboratory of Theoretical Physics, JINR.

0 pHckpeTHOM cCHeKxTpe HOBOM TOUYHO pemaeMoi
KBaHTOBOH mnpobiieMl N uacTHI Ha NOpAMOM
B.H.HUnosemuen, [1.B.Memepskos

llokazaHo, 4YTO 3agadua O HAXOKGEHHH AUCKPEeTHOro
crnexTpa KBaHTOBOt N-—-uacTuuHoi mpobiiemMnl ¢ ra-
MHJIb TOHHaHOM
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/cucrema Casepnenpga B noreHnuare Mopca/ cBogmuTes
K pemeHHi0 anrefpaduecKoro ypaBHeHHsi, Haiinenst coB6crT—
BeHHble 3HAYeHHA [aMHJIbTOHHAHA M BOJIHOBHE GYHKIHH,
COOTBETCTBYHMHE NpOocTeimMM BO36yXKoeHHUAM pacCcMaTpH—-
Baemort N —4acTHUHOI# CHCTEMH.

Pa6oTa BHIIONIHEHA B JlaBopaTopHH TeopeTHYeCKOH
dbusuxyun OUIH.

Till now only one exact solution was found for the
problem of quantum partlcles on a line interacting with
an external field !"3/,This solution was obtained by Ca-
logero’/l for the system described by the Schrddinger
equation
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at
V) =ala«1)¢"E, W =p£?. (2)

Here p; and x;, are momenta and coordinates of particles
(bosons or fermions). The spectrum of this problem is
completely discrete and equidistant, i.e., differs from
the spectrum of trivial N noninteracting harmonic oscil-
lators only by an additive constant and multiplicity of
the energy levels.

N-particle systems with the Hamiltonian (1) are 1i-
miting cases of more general quantum systems with N deg-
ress of freedom related to semisimple Lie algebras. These
systems were studied by Olshatensky and Perelomov /%, In
a series of particular cases they found the connection
between these Hamiltonians and Laplace~Beltrami opera-
tors on the symmetric spaces. In particular, it has been
shown that the ground-state wave function has a factori-
zation property and can be constructed in an explicit
form’Y

In this paper we study the discrete spectrum of the
quantum problem with Hamiltonian (1) at

V() = ala-1) sinh™2 (£), W(&) =2a% (e € _ g2 ). (3)

This is the so-called Sutherland system’%/ in a Morse os-
cillator. For the Hamiltonian (1) to be self-adjoint it
is necessary to constrain constants @ and A in (3):

ImA = Ima =0, Rea >3/2/8/,

The system (3), evidently, has also the states with
continuous spectrum corresponding to the scattering of M
particles in bound states of (N~M)ones,N>M. These pro-
cesses are not discussed here; we are interested only in
the non-trivial discrete spectrum of system (3).

The ground-state wave function for the Schr6dinger
equation (1,3) was found by us earlier in paper’%’. Note
that variables in that _equation are not separable even
in the simplest case N'= 2, One can also construct non-
trivial quantum integrals of motion, the operators con-
taining higher degrees of momenta commuting with each
other and with the Hamiltonian. _

Performing in (1,3) the change of variables zj = e 7%j
(ngj‘<m), we transform this equation ag follows

u:[ 2(z2 d
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Further, for brevity we suppose the particles to obey
Bose statistics. For the reduction of powers of singula-
rities in (4) let us use a standard trick and introduce
a function ¢(zy,..,z ) by the relation

N N
¢'(zlt‘“’zN) = (jl;lk‘zj-zklys'n—-l Z€GXD(~TZS)) ¢(Zlv---va) . (5)

Let us choose the constants y andr equal to g and
A(A>0), respectively. The leading singularities in (4)
are cancelled out and the equation for function $(Z4,000,2y)
can be represented in the form

N 2
-2 [zzi-i +(z,(1+28) -2A2% + 2a § --—3-)-31’-] +
=11 gg2 T TS TTEEI
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+1p 2 2 -(E - 6@14 -0, (6)
where

P(B) =2A(2a(N-1) +1 + 28 -2A) .
E(B) = —N[282+ 2B(N-1) + ﬂ;-(N—l)(2N -1,

According to Bose statistics ¢ (z peesZy) must be sym-
metric under the interchange of each two arguments. Let
us represent it as a function of N symmetric polynomials
a a8 a

1N

(7

¢(z1,...,zN) = ¢(al,...,a N) .

n i f-1,u,N, Ba3z-9
3, = Z,, 8,= s, ,?=1..N, =3 .
1oy t € -1 1 i=1 gz (8

In what follows, where the indices of quantities {a, }
exceed N or are less than 1, one must put aygy,1 =1,
a°= 8N12=3N+3=...= 0‘. . . ]

By simple calculations taking into account the proper-
ties of polynomial a; and operator B, we obtain the fol-
lowing relations
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By (9a-d) it is easy to find the equation for function

(@i, unay) (8):

#y+ By 8,00 8y) = (B <6 (BNS(y,enay, (10)

where f 2
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Let us choose the solutions of eq.(10) as polynomials
in variables {at} of the form

(n) g ) i1 in
3, ,e0ey = 3 b ¢, . a el o o (13)
¢ ( 1 a’N) v=o jl+"'+jN=V igedy 1 N
0<j <v

Evidently the operator ﬁl does ngt raise the maximal deg-
ree of these polynomials. As for H,, it adds 1 to this
degree if the condition

p(B) + 4An =0 (14)

is not satisfied. -

1f p(B) obeys (14), the sum H;+H, is a linear ope-
rator acting in the space of polynomials in N variables
with degree not exceeding n. The dimensionality of this
(N+m)!
n!N!
sent (at given 0 ) the spectrum of the considered problem
up to a constant &(B). In this case the parameter B and
constant &(B) are completely determined by the integer n.
The normalizability condition for the wave function (5)
has the form

: The eigenvalues of this operator repre-

space 1is

N ga N 984 2
d cc-d H - n "2A tasy < o0,
! Z4 Zn j>klzj zk‘ e=1 zg exp (~ Zs)|¢(zp ZN)l (19)
25



From (13) and (15) it follows that B(n) must obey the
condition 8>0, i.e., the integer n is restricted:

A-a(N-~1l)>n+1/2. (16)

So, we formulate the way for constructing the discrete
spectrum of the Hamiltonian (1,3): for the integers n
which obey the condition (16) one must find the matrix
of the operator H, +Hy according to (10-12) in the basis
{al ...a’ b, Jq4+.etiy< . The eigenvalues of this mat-
rix, up to constant —5(3) represent the spectrum to be
found. So, the problem 1s reduced to an algebralc equa-
tion. This problem is apparently simple in the case n-=1,
where ¢ (ay,..,a)) has the form

N
B (3 seens By) =l:£,1 Copap+Cy (17)

The operator 82/aagaa acting on the functjon (17) re-
duces it to zero. The matrix of the operator H +H2 is
the upper triangular one and its spectrum is determlned
by the diagonal elements:

—E(el) - —g—[(QA-a (N-1)-3)% + ﬁf(-l‘ls.z:-l)-l +2(N—£+ 1)(2A-2~a(N-0)),

£=2,0IC’N+10 (18)

Note that at 8/2< A - a(N~ 1)<5/2 the values Eg (18)
and the ground-state energy’/4/ represent the whole disc-
rete spectrum of the problem we are interested in. One
can also (up to normalization constants) determine the
wave functions corresponding to eigenvalues E(zl)

- s
qb(l)(al....,a. ) = a(l) 2 -1) £ (-24) j.__(.r_q_._’.i.l_')_!.._.. »
j=1 a € -HIMN-L+1)1

1(2A=2_oNsj+l-1)
a

RA-2

I'( -2N-£) -1)

When n>1 it is easy to see that the matrix of the
operator H; in the basis fall ...aNN } is no longer upper
triangular, and the determination of eigenvalues repre-
sents a much more complicated problem. Possibly, for the
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solution of this problem one can apply algebraic methods
as it is made in papers’/?/,

We can, however, immedigtely find one of these elgen—
values, Really, note that. H1+-H transforms (under the
condition (14)) the linear space of polynomials of the
form (13) to a space of a lower dimensionality: its acti-
on on ail.“aﬁN does not contain the polynomial of zero
degree. So, there exists a subspace correspondlng to the
zero elgenvalue of this operator and E® - &(B 1) =

[a G@g-l)-+(2A a(N—l)-2n-1)] are eigenvalues of the
Hamlltonlan. It is evident that the set {E® )L up to
2
a constant — %?{Ng—h,coincides with that set of the le-

vels of unperturbed system of N particles in the Morse
oscillator, for which each particle is on an n-th level
and the constant A is '"renormalized" by the interaction:

A-»A—g—(N-l).

Detailed calculations and investigation of the whole
discrete 'spectrum for the tase n>2 will be pulblished
elsewhere.

One of the authors (V.I.) is very grateful to Dr.
AM.Perelomov for useful discussions.
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